

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 10 (2020)

Journal homepage: http://www.ijcmas.com

Original Research Article

https://doi.org/10.20546/ijcmas.2020.910.078

Effect of NPK and Organic Manures on Plant Growth Fruit Yield and Fruit Quality of Snake Gourd (*Trichosanthes anguina* L.) CV. Faizabad Long

B. Vennela^{1*}, S.S. Sarvanan² and Vijay Bahadur³

¹Horticulture (Vegetable science), ²Department of Horticulture, ³Department of Horticulture, Naini, SHUATS, Prayagraj (U.P)-211007, India

*Corresponding author

ABSTRACT

Keywords

Randomized block design, Urea, Dap, Mop and Fym, Varmicompost, Sheep manure, Poultry manure

Article Info

Accepted:
07 September 2020
Available Online:
10 October 2020

Afield experiment entitled "Effect of NPK and Organic manures on plant growth, fruit yield and fruit quality of Snake Gourd (*Trichosanthes anguina* L.) cv. Faziabad Long" was conducted at Vegetable Research Farm, Department of Horticulture, Sam Higginbottom University of Agriculture Technology and Sciences. Prayagraj during Rabi Season of the year 2018-2019. The highest plant height (132.83, 258.64 and 338.47cm) was observed in treatment combination of T10 25% NPK+75% Vermicompost. The maximum fruit length (cm) (98.55) was recorded in the treatment combination of T10 25% NPK+75% Vermicompost. The maximum fruit yield (q/ha) (375.32) was recorded in the treatment combination of T10 25% NPK+75% Vermicompost. From the present investigation, it can be concluded that the treatment T10 25% NPK+75% Vermicompost resulted maximum fruit yield per plant (q/ha) (375.32) with net return, benefit cost ratio and also shows good root quality with TSS (3.11) and ascorbic acid (5.28). Organic farming experiments in long run for stability and better yield.

Introduction

Snake gourd (*Trichosanthes anguina* L.) is an annual vegetable crop, climbing vine, providing both long and short fruits. India is a native home of snake gourd. Vegetables are important in maintaining satisfactory nutritional level in human diet. There will be increasing demand for this commodity with

accelerated industrial growth and increasing urban area. Vegetable are not only important source of vitamins and minerals but they can also help in improving economic condition of farmer. Snake gourd is a popular vegetable crop in southern India grown principally for the immature fruits that can be cooked. The fruit is rich in minerals, calcium, phosphorus, and vitamins, riboflavin, thiamine, niacin and

carotene. Lateritic soil is best suited for cultivations of cucurbitaceous family crop. The traditional method of farming and less use of organic manure reduces the quality of snake gourd. For increasing the productivity economical fertilizer package need to be formulated which can provide all the essential elements through both organic and inorganic sources to get good quality, produce with higher production, keeping the production cost at sustainable level of an average farmer. Intensive use of only chemical fertilizers to achieve high production has created various problems. Continuous applications of heavy doses of chemical fertilizers without organic manures has led to deterioration of soil health in terms of physical and chemical properties of soil, decrease in soil microbial activities, and also reductions in soil humus (Anjanappa et al., 2011).

Organic manures increase the organic matter in the soil. They provide organic acids that help dissolve soil nutrients and make them available for the plants. Application of organic manures improves the soil fertility, soil structure and moisture holding capacity. Integrated plant nutrient management is one of the recent methods of supplying nutrients to the plants by organic as well as inorganic means together to fulfill the nutrient requirements. Composts, vermicomposts, poultry manures, Farmyard manure (FYM) etc. are bulky organic manures, although supply low quality of major nutrients, but have potential to supply all essential nutrients for longer periods (Kale et al., 1998). The optimum dose of nitrogen, phosphorus, and potassium vary greatly cultivar, geographical location and the environmental factors.

Materials and Methods

The experiment entitled "Effect of NPK and Organic manures on plant growth, fruit yield and fruit quality of Snake Gourd (Trichosanthe anguina L.) cv. Faziabad Long" was conducted in rainy season at Prayagraj region adapting randomized block design consisting of 13 treatments and three replications T_1 . CONTROL (100N:50P:50K kg/ha), T₂ - 75% NPK+25% Vermicompost, T₃ 75% NPK+25% FYM, T₄ _ 75% NPK+25% Poultry Manure, T₅ _ 75% Sheep manure, T_6 . 50% NPK+25% NPK+50% Vermicompost, T_7 NPK+50% FYM, T₈ - 50% NPK+50% Poultry Manure, T₉ 50% NPK+50% Sheep manure, T_{10} 25% NPK+75% Vermicompost, T_{11} 2 25% NPK+75% FYM, T_{12} - 25% NPK+75% Poultry Manure, T₁₃ 25% NPK+75% Sheep manure were used in inorganic and source forms. The inorganic fertilizers used were urea as Nitrogen, SSP. as phosphorus and MOP as potash. Among organic manure as decomposed farmyard manure, vermicompost and poultry manures were used.

The nitrogen was applied in two splits viz. at the sowing and after 30 days of sowing. The seed of snake gourd were dibbled at the rate of 2-3 seed per hill at spacing of 1.5 m \times 0.5 m. thinning and gap filling were carried out at 20 days after sowing in order to have one healthy plant per hill.

The observations regarding yield, weight of fruit, length of fruit, fruit per vine and nutrient content were taken and data were analyzed statistically.

Results and Discussion

Effect of NPK and organic manures on plant height (cm) of Snake gourd (*Trichosanthes anguina* L.) cv. Faizabad long

The plant height was influenced by different level of NPK with different source of organics manures at 30, 60 and 90 DAS and result were found to be significant (Table 1).

The highest plant height (132.83, 258.64 and 338.47cm) was observed in treatment 25% combination T_{10} NPK+75% of Vermicompost followed by T_6 50% NPK+50% Vermicompost, 75% T_{4} Manure, 75% NPK+25% Poultry T_2 Vermicompost and T₇ 50% NPK+25% NPK+50% FYM and T₁₁ 25% NPK+75% FYM. The plant height was found to be minimum (78.76, 118.66, 228.43cm) in the treatment combination of T₁ CONTROL (RDF) (100N:50P:50K kg/ha). These findings are in consonance with the earlier studies of Arancon et al., (2006), Prabha et al., (2007), Narkhede *et al.*, (2011).

Effect of NPK and organic manures on Number of branches plant⁻¹ of Snake gourd (*Trichosanthes anguina* L.) cv. Faizabad long

Influence of different level of NPK with different source of organic manures on number of branches per plant was found to be significant different among the treatments. The maximum number of (13.58) branches per plant was recorded in the treatment combination of T10 25% NPK+75% Vermicompost followed 50% by T_6 NPK+50% Vermicompost, T_7 50% NPK+50% FYM, T₃ 75% NPK+25% FYM and T₂ 75% NPK+25% Vermicompost. The minimum number of (5.28) branches pr plant was recorded in the treatment T₁ CONTROL (RDF) (100N:50P:50K kg/ha). These findings are in consonance with the earlier studies of Arancon et al., (2006), Prabha et al., (2007), Narkhede et al., (2011).

Effect of NPK and organic manures on fruit length (cm) of Snake gourd (*Trichosanthes anguina* L.) cv. Faizabad long

Influence of different level of NPK with different source of organic manures on fruit length (cm) was found to be significant different among the treatments. The maximum fruit length (cm) (98.55) was recorded in the treatment combination of T10 25% NPK+75% Vermicompost followed by T₆ 50% NPK+50% Vermicompost, T₇ 50% NPK+50% FYM, T₃ 75% NPK+25% FYM, T₂ 75% NPK+25% Vermicompost and T₁₁ 25% NPK+75% FYM. The minimum fruit length (cm) (47.99) was recorded in the treatment T_1 **CONTROL** (RDF) (100N:50P:50K kg/ha). These findings are in consonance with the earlier studies of Arancon et al., (2006), Prabha et al., (2007), Narkhede et al., (2011)

Effect of NPK and organic manures on fruit weight (kg) of Snake gourd (*Trichosanthes anguina* L.) cv. Faizabad long

The fruit weight (kg) as influenced by different level of NPK with different source of organic manures is furnished in table 2.

Influence of different level of NPK with different source of organic manures on fruit weight (kg) was found to be significant different among the treatments. The maximum fruit weight (kg) (682.42) was recorded in the treatment combination of T10 25% NPK+75% Vermicompost followed by T₆ 50% NPK+50% Vermicompost, T₇ 50% NPK+50% FYM, T₃ 75% NPK+25% FYM, T₂ 75% NPK+25% Vermicompost and T₁₁ 25% NPK+75% FYM. The minimum fruit weight (kg) (382.48) was recorded in the T₁CONTROL treatment (RDF) N:50P:50K kg/ha). These findings are in consonance with the earlier studies of Arancon et al., (2006), Prabha et al., (2007), Narkhede et al., (2011). The results of the present investigation have similarity with the findings reported earlier by Rai et al., (2012), Kameswari et al., (2011) in cucumber and Dewagan (2012) in bottle gourd.

Effect of NPK and organic manures on number of fruit per plant of Snake gourd (*Trichosanthes anguina* L.) cv. Faizabad long

Influence of different level of NPK with different source of organic manures on number of fruit per plant was found to be significant different among the treatments. The maximum number of fruit per plant (18.33) was recorded in the treatment of combination T10 25% NPK+75% Vermicompost followed by T₆ 50% NPK+50% Vermicompost, T₁₁ 25% NPK+75% FYM, T₇ 50% NPK+50% FYM and T₂ 75% NPK+25% Vermicompost. The minimum number of fruit per plant (5.22) was recorded in the treatment T₁CONTROL (RDF) (100N:50P:50K kg/ha). These findings are in consonance with the earlier studies of Arancon et al., (2006), Prabha et al., (2007), Narkhede et al., (2011). The results of the present investigation have similarity with the findings reported earlier by Rai et al., (2012), Kameswari et al., (2011) in cucumber and Dewagan (2012) in bottle gourd.

Effect of NPK and organic manures on fruit yield per plant (q/ha) of Snake gourd (*Trichosanthes anguina* L.) cv. Faizabad long

Influence of different level of NPK with different source of organic manures on fruit yield (q/ha) was found to be significant different among the treatments.

The maximum fruit yield per plant (q/ha) (375.32) was recorded in the treatment 25% combination of T10 NPK+75% Vermicompost followed 50% T_6 NPK+50% Vermicompost, T_{11} 25% NPK+75% FYM, T₇ 50% NPK+50% FYM, T₂ 75% NPK+25% Vermicompost, T₁₂ 25% NPK+75% Poultry Manure and T₃ 75% NPK+25% FYM. The minimum fruit yield (q/ha) (59.90) was recorded in the treatment T₁CONTROL (RDF) (100N:50P:50K kg/ha). These findings are in consonance with the earlier studies of Arancon *et al.*, (2006), Prabha *et al.*, (2007), Narkhede *et al.*, (2011). The results of the present investigation have similarity with the findings reported earlier by Rai *et al.*, (2012), Kameswari *et al.*, (2011) in cucumber and Dewagan (2012) in bottle gourd.

Effect of NPK and organic manures on TSS of Snake gourd (*Trichosanthes anguina* L.) cv. Faizabad long

Influence of different level of NPK with different source of organic manures on TSS was found to be significant different among the treatments. The maximum TSS (3.11) was recorded in the treatment combination of T10 25% NPK+75% Vermicompost followed by T_6 50% NPK+50% Vermicompost, T_7 50% NPK+50% FYM, T_{12} 25% NPK+75% Poultry Manure and T_{13} 25% NPK+75% Sheep manure (Table 3).

The minimum TSS (2.05) was recorded in the treatment T_1 CONTROL (RDF) (100N:50P:50K kg/ha). These findings are in consonance with the earlier studies of (Marilou *et al.*, 2012).

Effect of NPK and organic manures on Ascorbic acid of Snake gourd (*Trichosanthes anguina* L.) cv. Faizabad long

The ascorbic acid as influenced by different level of NPK with different source of organic manures is furnished in table.

Influence of different level of NPK with different source of organic manures on ascorbic acid was found to be significant different among the treatments.

Table.1 Effect of NPK and Organic manures on plant height, number of branches, number of female flowers, at different plant crop growth stages on one cultivar

S.No	Treatment	Treatment Combination	Plant Height (cm)			Number Of	Number \of
			30days	60days	90days	Branches/Plant(cm)	Female Flower/Vine(cm)
1	T_1	CONTROL(RDF)100N:50P:50K)	78.76	118.66	228.43	47.99	382.48
2	T_2	75%NPK+25%VERMICOMPOST	121.59	242.33	341.38	92.47	630.39
3	T_3	75%NPK+25% FYM	116.92	241.63	348.72	93.51	648.59
4	T_4	75%NPK+25%POULTRY MANURE	123.92	246.73	348.63	83.4	558.37
5	T_5	75%NPK+25%SHEEP MANURE	110.77	232.59	333.44	72.54	480.38
6	T_6	50%NPK+50%VERMICOMPOST	131.89	252.58	355.09	97.54	674.72
7	T_7	50%NPK+50%FYM	127.86	248.44	352.73	96.84	660.42
8	T_8	50%NPK+50%POULTRY MANURE	107.74	229.81	334.45	79.82	611.89
9	T ₉	50% NPK+50% SHEEP MANURE	110.83	237.63	338.47	88.48	580.51
10	T_{10}	25%NPK+75%VERMICOMPOST	132.83	258.64	358.52	98.55	682.42
11	T ₁₁	25%NPK+75% FYM	118.99	240.85	341.72	91.51	595.73
12	T ₁₂	25%NPK+75%POULTRY MANURE	113.92	234.34	334.97	85.51	579.68
13	T_{13}	25%NPK+75%SHEEP MANURE	102.48	215.81	322.30	77.62	542.51
		F-test	S	S	S	S	S
		C.D. at 0.5%	0.794	0.392	2.768	0.209	0.239
		S.Ed. (<u>+</u>)	0.385	0.190	1.341	0.101	0.116

Table.2 Effect of NPK and Organic manures on fruit length (cm), fruit weight (kg), number of fruit per plant, total yield per vine (kg) fruit yield per plant (q/ha).

At different plant growth stages on one cultivar

S.No	Treatment	Treatment Combination	Fruit Length (Cm)	Fruit Weight(Kg)	Number Of Fruits Per Plant	Total Yield Per Vine (Kg)	Fruit Yield per Plant (Q/Ha)
1	T_1	CONTROL(RDF)100N:50P:50K)	47.99	382.48	5.22	2.00	59.9
2	T_2	75%NPK+25%VERMICOMPOST	92.47	630.39	12	7.56	226.94
3	T ₃	75%NPK+25% FYM	93.51	648.59	10.67	6.92	207.56
4	T_4	75%NPK+25%POULTRY MANURE	83.4	558.37	8.67	4.84	145.18
5	T_5	75%NPK+25%SHEEP MANURE	72.54	480.38	7	3.36	100.87
6	T_6	50%NPK+50%VERMICOMPOST	97.54	674.72	15	10.12	303.63
7	T_7	50%NPK+50%FYM	96.84	660.42	12.33	8.15	244.36
8	T_8	50%NPK+50%POULTRY MANURE	79.82	611.89	8.67	5.31	159.42
9	T ₉	50%NPK+50%SHEEP MANURE	88.48	580.51	9.67	5.61	168.35
10	T_{10}	25%NPK+75%VERMICOMPOS	98.55	682.42	18.33	12.51	375.32
11	T_{11}	25%NPK+75% FYM	91.51	595.73	13.67	8.13	244.04
12	T_{12}	25%NPK+75%POULTRY MANURE	85.51	579.68	12.33	7.15	214.48
13	T ₁₃	25%NPK+75%SHEEP MANURE	77.62	542.51	8	4.34	130.2
		F-test	S	S	S	S	S
		C.D. at 0.5%	0.402	27.352	2.383	1.485	44.547
		S.Ed. (<u>+</u>)	0.195	13.253	1.155	0.719	21.548

Int.J.Curr.Microbiol.App.Sci (2020) 9(10): 650-658

Table.3 Effect of NPK and organic manures on TSS and ascorbic acid at different plant growth stages on one cultivar

S.No	Treatment	Treatment Combination	Tss	Ascorbic Acid	
1	T_1	CONTROL(RDF)100N:50P:50K)	2.05	3.2	
2	T_2	75%NPK+25%VERMICOMPOST	2.43	3.76	
3	T_3	75%NPK+25% FYM	2.68	3.63	
4	T_4	75%NPK+25%POULTRY MANURE	2.79	3.56	
5	T_5	75%NPK+25%SHEEP MANURE	2.43	4.66	
6	T_6	50%NPK+50%VERMICOMPOST	2.62	3.6	
7	T_7	50%NPK+50%FYM	2.61	4.33	
8	T_8	50%NPK+50%POULTRY MANURE	2.4	4.54	
9	T ₉	50%NPK+50%SHEEP MANURE	2.31	4.74	
10	T_{10}	25%NPK+75%VERMICOMPOST	3.11	5.28	
11	T_{11}	25%NPK+75% FYM	2.79	5.14	
12	T_{12}	25%NPK+75%POULTRY MANURE	2.75	4.95	
13	T_{13}	25%NPK+75%SHEEP MANURE			
		F-test	S	S	
		C.D. at 0.5%	0.197	0.239	
		S.Ed. (<u>+</u>)	0.095	0.116	

Table.4 Economics of different varieties and benefit cost ratio of Snake gourd (Trichosanthes anguina L.) cv. Faizabad long

Treatme nts	Treatments combinations	Yield q ha-1	Selling Rate (q Rs.)	Gross return (q Rs.	Cost of cultivation	Net return q Rs,	Benefit cost rtaio
T ₁	CONTROL (RDF) (100N:50P:50K kg/ha)	59.9	2100	125790	120645	5146	1.04
T_2	75% NPK+25% Vermicompost	226.94	2100	476574	179166	297408	2.66
T_3	75% NPK+25% FYM	207.56	2100	435876	149166	286710	2.92
T ₄	75% NPK+25% Poultry Manure	145.18	2100	304878	130416	174462	2.34
T ₅	75% NPK+25% Sheep manure	100.87	2100	211827	130416	81411	1.62
T ₆	50% NPK+50% Vermicompost	303.63	2100	637623	157687	479936	4.04
T_7	50% NPK+50% FYM	244.36	2100	513156	137687	375469	3.73
T ₈	50% NPK+50% Poultry Manure	159.42	2100	334782	125187	209595	2.67
T 9	50% NPK+50% Sheep manure	168.35	2100	353535	125187	228348	2.82
T ₁₀	25% NPK+75% Vermicompost	375.32	2100	788172	136208	651964	5.79
T ₁₁	25% NPK+75% FYM	244.04	2100	512484	126208	386276	4.06
T ₁₂	25% NPK+75% Poultry Manure	214.48	2100	450408	119958	330450	3.75
T ₁₃	25% NPK+75% Sheep manure	130.2	2100	273420	119958	153462	2.28

The maximum ascorbic acid (5.28) was recorded in the treatment combination of 25% NPK+75% Vermicompost T10 followed by T₁₁ 25% NPK+75% FYM, T₁₂ 25% NPK+75% Poultry Manure, T₁₃ 25% NPK+75% Sheep manure, T_9 NPK+50% Sheep manure and T₅ 75% NPK+25% Sheep manure. The maximum ascorbic acid (3.20) was recorded in the treatment T_1 CONTROL (100N:50P:50K kg/ha). These findings are in consonance with the earlier studies of (Marilou et al., 2012) (Table 4).

From the present investigation, it can be concluded that the treatment T10 25% NPK+75% Vermicompost resulted maximum fruit yield per plant (q/ha) (375.32) with net return, benefit cost ratio and also shows good root quality with TSS (3.11) and ascorbic acid (5.28). Organic farming experiments in long run for stability and better yield.

References

- Haque MM, Uddin MS, Mehraj H, Uddin AJ. Evaluation of snake gourd (*Trichasanthes anguina* L.) test hybrids comparing with four popular checks. International Journal of science and Biotechnology. 2014; 2(4): 525-528.
- Mahale, AG, SB Dodake , MC Kasture, SC Jadhav, Snehal V Raut and Nayan A

- Kambale (2016). "Effect of Integrated Nutrient Management on Snake gourd (*Trichosanthes anguina* L.)
- Mohan Kumar, K., E. Somasundaram, S. Marimuthul and C. Meenambigai (2017). Growth, Yield and Quality of Snake Gourd (*Trichosanthes anguina* L.) as Influenced by Organic Nutrient Management Practices.
- Sheeba, R I. and Janova, V. (2015). Influence of nutrient sources on the seed yield and quality in snake gourd (*Trichosanthes anguina* L.). *Intl. J. Agric. Sci. and Res.*, 5(2): 99-104.
- Thriveni Vangapandu, Mishra H.N., Mandal Purandar, Chhuria Swarnaprabha And Biswal Monalisha (2017). Influence Of Integrated Nutrient Management On Yield, Secondary Nutrients Content And Uptake Of Bitter Gourd (Momordica charantia L.). International Journal of Agriculture Sciences.
- Walkely, A. and Black, G.A (1956). Critical exam of rapid method for determining organic carbon in soils, effect of variation in digestive condition and inorganic soil constituents. *Soil sci.*, 251:632.
- Zeka, N, Mero, G, Skenderasi, B, and Gjançi, S. 2014. Effects of nitrogen sources and levels on yield and nutritive values of spinach (*Spinacea oleracea* L.). J. Int. Acad. Res. Multidisciplinary, 2(2): 327-337.

How to cite this article:

Vennela, B., S.S. Sarvanan and Vijay Bahadur. 2020. Effect of NPK and Organic Manures on Plant Growth Fruit Yield and Fruit Quality of Snake Gourd (*Trichosanthes anguina* L.) CV. Faizabad Long. *Int.J.Curr.Microbiol.App.Sci.* 9(10): 650-658.

doi: https://doi.org/10.20546/ijcmas.2020.910.078